HOMEWORK 6 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 3.7: Rates of change in the natural and social sciences
3.7.4.
(a) $f^{\prime}(t)=e^{-\frac{t}{2}}-\frac{t}{2} e^{-\frac{t}{2}}=e^{-\frac{t}{2}}\left(1-\frac{t}{2}\right)$
(b) $f^{\prime}(3)=e^{-\frac{3}{2}}\left(-\frac{1}{2}\right)$
(c) $t=2$
(d) When $t<2$
(e) $f(2)-f(0)+f(2)-f(8)=2 e^{-1}-0+2 e^{-1}-8 e^{-4}=4 e^{-1}-8 e^{-4}$
(f) The particle is moving to the right between $t=0$ and $t=2$, and then to the left from $t=2$ to $t=8$.
(g) $f^{\prime \prime}(t)=-\frac{1}{2} e^{-\frac{t}{2}}\left(1-\frac{t}{2}\right)+e^{-\frac{t}{2}}\left(-\frac{1}{2}\right)=e^{-\frac{t}{2}}\left(-\frac{1}{2}+\frac{t}{4}-\frac{1}{2}\right)=e^{-\frac{t}{2}}\left(\frac{t}{4}-1\right)$; $f^{\prime \prime}(3)=e^{-\frac{3}{2}}\left(-\frac{1}{4}\right)$
(h) Use a calculator
(i) Speeding up when $f^{\prime \prime}(t)>0$ and $f^{\prime}(t)>0$ or when $f^{\prime \prime}(t)<0$ and $f^{\prime}(t)<0$. But solving those equations reveals that none of the two situations can happen! Hence the particle is constantly slowing down!

3.7.8.

(a) First solve for $v(t)=0$, where $v(t)=\frac{d s}{d t}=80-32 t$, you get $t=\frac{80}{32}=\frac{5}{2}$. So the maximum height s^{*} is $s^{*}=s\left(\frac{5}{2}\right)=200-100=100$
(b) To find the time t when the ball is 96 ft above the ground, we need to solve the equation $s(t)=96$, and you get $t=2,3$, whence $v(2)=80-32 \cdot 2=16 \frac{\mathrm{ft}}{\mathrm{s}}$ and $v(3)=80-32 \cdot 3=-16 \frac{\mathrm{ft}}{\mathrm{s}}$
3.7.17. $f^{\prime}(x)=6 x=$ linear density at $x . f^{\prime}(1)=6, f^{\prime}(2)=12, f^{\prime}(3)=18$. The density is highest at 3 and lowest at 1.
3.7.26. See attached document 'Solution to 3.7.26'. You should get $b=6, a=140$, and the population goes to $a=140$ (because the denominator goes to 1 as t goes to ∞)

[^0]
3.7.31.

(a) $C^{\prime}(x)=12-0.2 x+0.0015 x^{2}$
(b) $C^{\prime}(200)=32$; The cost of producing one more yard of a fabric once 200 yards have been produced
(c) $C(201)-C(200)=32.2005$, which is pretty close to $C^{\prime}(200)$

SEction 3.8: Exponential growth and decay

3.8.6.

(a) Hint: Solve the differential equation $y^{\prime}=k y$ with $y(0)=361$ and $y(10)=$ 439 and find $y(50)$
(b) Hint: Solve the differential equation $y^{\prime}=k y$ with $y(0)=439$ and $y(20)=$ 683 and find $y(39)$ and $y(49)$

3.8.9.

(a) $y(t)=100 e^{\ln \left(\frac{1}{2}\right) \frac{t}{30}}=100\left(\frac{1}{2}\right)^{\frac{t}{30}}$
(b) $y(100)=100\left(\frac{1}{2}\right)^{\frac{100}{30}} \approx 9.92$
(c) $t=30 \frac{\ln \left(\frac{1}{100}\right)}{\ln \left(\frac{1}{2}\right)} \approx 199.3$
3.8.11. We know $C e^{5730 K}=\frac{C}{2}$ and $C e^{K t}=0.74 C$, and we need to solve for t. First of all, the first equation gives $e^{5730 K}=\frac{1}{2}$, so $K=\frac{\ln (0.5)}{5730} \approx-0.000121$, and from the second equation, we get $e^{K t}=0.74$, so $K t=\ln (0.74)$, so $t=\frac{\ln (0.74)}{\frac{\ln (0.5)}{5730}} \approx 2489$
3.8.19.
(a) (i) $3000\left(1+\frac{0.05}{1}\right)^{(1)(5)} \approx 3828$
(ii) $3000\left(1+\frac{0.05}{2}\right)^{(2)(5)} \approx 3840$
(iii) $3000\left(1+\frac{0.05}{12}\right)^{(12)(5)} \approx 3850$
(iv) $3000\left(1+\frac{0.05}{52}\right)^{(52)(5)} \approx 3851.61$
(v) $3000\left(1+\frac{0.05}{365}\right)^{(365)(5)} \approx 3852.01$
(vi) $3000 e^{0.05(5)} \approx 3852.08$
(b) $A^{\prime}=0.05 A, A(0)=3000$

Section 3.9: Related Rates

3.9.5. $\frac{d h}{d t}=\frac{3}{25 \pi}$ (Use $V=\pi r^{2} h$)
3.9.13. $\frac{d(x+y)}{d t}=\frac{25}{3}$ (use the law of similar triangles to get $\frac{x}{x+y}=\frac{3}{5}$)
3.9.15. $\frac{d D}{d t}=65 \mathrm{mph}$ (use the pythagorean theorem to conclude $D^{2}=x^{2}+y^{2}$)
3.9.27. $\frac{d h}{d t}=\frac{6}{5 \pi}$ (use the fact that $V=\frac{\pi}{3} r^{2} h=\frac{\pi}{12} h^{3}$ because $h=\frac{r}{2}$)
3.9.40. See document 'Solution to 3.9 .40 ' on my webpage. Use the definition of $\tan (\theta),-\frac{80 \pi}{3}$
3.9.45. See document 'Solution to 3.9 .45 ' on my webpage. You should get $x^{\prime}=\frac{7}{4} \sqrt{15}$

[^0]: Date: Friday, October 18th, 2013.

