HOMEWORK 6 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

SECTION 3.7: RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES 3.7.4.

- (a) $f'(t) = e^{-\frac{t}{2}} \frac{t}{2}e^{-\frac{t}{2}} = e^{-\frac{t}{2}}\left(1 \frac{t}{2}\right)$
- (b) $f'(3) = e^{-\frac{3}{2}} \left(-\frac{1}{2}\right)$
- (c) t = 2
- (d) When t < 2
- (e) $f(2) f(0) + f(2) f(8) = 2e^{-1} 0 + 2e^{-1} 8e^{-4} = 4e^{-1} 8e^{-4}$
- (f) The particle is moving to the right between t = 0 and t = 2, and then to the left from t = 2 to t = 8.
- (g) $f''(t) = -\frac{1}{2}e^{-\frac{t}{2}}\left(1 \frac{t}{2}\right) + e^{-\frac{t}{2}}\left(-\frac{1}{2}\right) = e^{-\frac{t}{2}}\left(-\frac{1}{2} + \frac{t}{4} \frac{1}{2}\right) = e^{-\frac{t}{2}}\left(\frac{t}{4} 1\right);$ $f''(3) = e^{-\frac{3}{2}}\left(-\frac{1}{4}\right)$
- (h) Use a calculator
- (i) Speeding up when f''(t) > 0 and f'(t) > 0 or when f''(t) < 0 and f'(t) < 0. But solving those equations reveals that **none** of the two situations can happen! Hence the particle is constantly slowing down!
- 3.7.8.
 - (a) First solve for v(t) = 0, where $v(t) = \frac{ds}{dt} = 80 32t$, you get $\left| t = \frac{80}{32} = \frac{5}{2} \right|$. So the **maximum height** s^* is $s^* = s(\frac{5}{2}) = 200 - 100 = 100$

(b) To find the time t when the ball is 96ft above the ground, we need to solve the equation s(t) = 96, and you get t = 2, 3, whence $v(2) = 80 - 32 \cdot 2 = 16\frac{ft}{s}$ and $v(3) = 80 - 32 \cdot 3 = -16\frac{ft}{s}$

3.7.17. f'(x) = 6x = linear density at x. f'(1) = 6, f'(2) = 12, f'(3) = 18. The density is highest at 3 and lowest at 1.

3.7.26. See attached document 'Solution to 3.7.26'. You should get b = 6, a = 140, and the population goes to a = 140 (because the denominator goes to 1 as t goes to ∞)

Date: Friday, October 18th, 2013.

PEYAM RYAN TABRIZIAN

3.7.31.

- (a) $C'(x) = 12 0.2x + 0.0015x^2$
- (b) C'(200) = 32; The cost of producing one more yard of a fabric once 200 yards have been produced
- (c) C(201) C(200) = 32.2005, which is pretty close to C'(200)

Section 3.8: Exponential growth and decay

3.8.6.

- (a) **Hint:** Solve the differential equation y' = ky with y(0) = 361 and y(10) = 439 and find y(50)
- (b) **Hint:** Solve the differential equation y' = ky with y(0) = 439 and y(20) = 683 and find y(39) and y(49)

3.8.9.

(a)
$$y(t) = 100e^{\ln(\frac{1}{2})\frac{t}{30}} = 100\left(\frac{1}{2}\right)^{\frac{t}{30}}$$

(b) $y(100) = 100\left(\frac{1}{2}\right)^{\frac{100}{30}} \approx 9.92$
(c) $t = 30\frac{\ln(\frac{1}{100})}{\ln(\frac{1}{2})} \approx 199.3$

3.8.11. We know $Ce^{5730K} = \frac{C}{2}$ and $Ce^{Kt} = 0.74C$, and we need to solve for t. First of all, the first equation gives $e^{5730K} = \frac{1}{2}$, so $K = \frac{\ln(0.5)}{5730} \approx -0.000121$, and from the second equation, we get $e^{Kt} = 0.74$, so $Kt = \ln(0.74)$, so $t = \frac{\ln(0.74)}{\frac{\ln(0.5)}{5730}} \approx 2489$

3.8.19.

(a) (i)
$$3000 \left(1 + \frac{0.05}{1}\right)^{(1)(5)} \approx 3828$$

(ii) $3000 \left(1 + \frac{0.05}{2}\right)^{(2)(5)} \approx 3840$
(iii) $3000 \left(1 + \frac{0.05}{12}\right)^{(12)(5)} \approx 3850$
(iv) $3000 \left(1 + \frac{0.05}{52}\right)^{(52)(5)} \approx 3851.61$
(v) $3000 \left(1 + \frac{0.05}{365}\right)^{(365)(5)} \approx 3852.01$
(vi) $3000e^{0.05(5)} \approx 3852.08$
(b) $A' = 0.05A, A(0) = 3000$
SECTION 3.9: RELATED RATES

3.9.5. $\frac{dh}{dt} = \frac{3}{25\pi}$ (Use $V = \pi r^2 h$) **3.9.13.** $\frac{d(x+y)}{dt} = \frac{25}{3}$ (use the law of similar triangles to get $\frac{x}{x+y} = \frac{3}{5}$)

- **3.9.15.** $\underline{\frac{dD}{dt} = 65mph}$ (use the pythagorean theorem to conclude $D^2 = x^2 + y^2$)
- **3.9.27.** $\boxed{\frac{dh}{dt} = \frac{6}{5\pi}}$ (use the fact that $V = \frac{\pi}{3}r^2h = \frac{\pi}{12}h^3$ because $h = \frac{r}{2}$)

3.9.40. See document 'Solution to 3.9.40' on my webpage. Use the definition of $\tan(\theta), \left[-\frac{80\pi}{3}\right]$

3.9.45. See document 'Solution to 3.9.45' on my webpage. You should get $x' = \frac{7}{4}\sqrt{15}$

 $\mathbf{2}$